Незалежний вектор. Лінійна залежність та незалежність векторів. Приклади завдань на лінійну залежність та лінійну незалежність векторів

У цій статті ми розповімо:

  • що таке колінеарні вектори;
  • які існують умови колінеарності векторів;
  • які існують властивості колінеарних векторів;
  • що таке лінійна залежність колінеарних векторів
Визначення 1

Колінеарні вектори – це вектори, які є паралелями однієї прямої або лежать на одній прямій.

Приклад 1

Умови колінеарності векторів

Два вектори є колінеарними, якщо виконується будь-яка з наступних умов:

  • умова 1 . Вектори a і b колінеарні за наявності такого числа λ, що a = b;
  • умова 2 . Вектори a і b колінеарні при рівному відношенні координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a b ⇔ a 1 b 1 = a 2 b 2

  • умова 3 . Вектори a та b колінеарні за умови рівності векторного твору та нульового вектора:

a b ⇔ a , b = 0

Зауваження 1

Умова 2 не застосовується, якщо одна з координат вектора дорівнює нулю.

Зауваження 2

Умова 3 застосовується лише до тих векторів, які в просторі.

Приклади завдань дослідження коллінеарності векторів

Приклад 1

Досліджуємо вектори а = (1; 3) і b = (2; 1) на колінеарність.

Як вирішити?

В даному випадку необхідно скористатися 2 умовою колінеарності. Для заданих векторів воно виглядає так:

Рівність неправильна. Звідси можна дійти невтішного висновку, що вектори a і b неколлинеарны.

Відповідь : a | | b

Приклад 2

Яке значення m вектора a = (1; 2) і b = (- 1; m) необхідне для колінеарності векторів?

Як вирішити?

Використовуючи другу умову коллінераності, вектори будуть колінеарними, якщо їх координати будуть пропорційними:

Звідси видно, що m = -2.

Відповідь: m = -2.

Критерії лінійної залежності та лінійної незалежності систем векторів

Теорема

Система векторів векторного простору лінійно залежить тільки у тому випадку, коли один із векторів системи можна виразити через інші вектори даної системи.

Доведення

Нехай система e 1, e 2,. . . , n є лінійно залежною. Запишемо лінійну комбінацію цієї системи рівну нульовому вектору:

a 1 e 1 + a 2 e 2 +. . . + a n e n = 0

в якій хоча б один із коефіцієнтів комбінації не дорівнює нулю.

Нехай a k ≠ 0 k ∈ 1, 2, . . . , n.

Ділимо обидві частини рівності на ненульовий коефіцієнт:

a k - 1 (a k - 1 a 1) e 1 + (ak - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Позначимо:

Ak - 1 a m , де m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В такому випадку:

β 1 e 1 +. . . + β k - 1 e k - 1 + β k + 1 e k + 1 +. . . + β n e n = 0

або e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Звідси випливає, що один із векторів системи виражається через всі інші вектори системи. Що потрібно було довести (ч.т.д.).

Достатність

Нехай один із векторів можна лінійно виразити через решту векторів системи:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносимо вектор e k у праву частину цієї рівності:

0 = γ 1 e 1 +. . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Оскільки коефіцієнт вектора e k дорівнює -1 ≠ 0, у нас виходить нетривіальне уявлення нуля системою векторів e1, e2,. . . , e n , але це, своєю чергою, означає, що це система векторів лінійно залежна. Що потрібно було довести (ч.т.д.).

Наслідок:

  • Система векторів є лінійно незалежною, коли жоден із її векторів не можна виразити через решту векторів системи.
  • Система векторів, яка містить нульовий вектор або два рівні вектори, лінійно залежна.

Властивості лінійно залежних векторів

  1. Для 2-х і 3-х мірних векторів виконується умова: два лінійно залежні вектори - колінеарні. Два колінеарні вектор- Лінійно залежні.
  2. Для 3-х мірних векторів виконується умова: три лінійно залежні вектор- Компланарні. (3 компланарні вектори - лінійно залежні).
  3. Для n-вимірних векторів виконується умова: n + 1 вектор завжди лінійно залежні.

Приклади розв'язання задач на лінійну залежність або лінійну незалежність векторів

Приклад 3

Перевіримо вектори a = 3, 4, 5, b = - 3, 0, 5, c = 4, 4, 4, d = 3, 4, 0 на лінійну незалежність.

Рішення. Вектори є лінійно залежними, оскільки розмірність векторів менша за кількість векторів.

Приклад 4

Перевіримо вектори a = 1, 1, 1, b = 1, 2, 0, c = 0, - 1, 1 на лінійну незалежність.

Рішення. Знаходимо значення коефіцієнтів, при яких лінійна комбінація дорівнюватиме нульовому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записуємо векторне рівняння у вигляді лінійного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Вирішуємо цю систему за допомогою методу Гауса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

З 2-го рядка віднімаємо 1-й, з 3-го - 1-й:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

З 1-го рядка віднімаємо 2-й, до 3-го додаємо 2-й:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

З рішення випливає, що система має безліч рішень. Це означає, що є ненульова комбінація значення таких чисел x 1 , x 2 , x 3 , у яких лінійна комбінація a , b , c дорівнює нульовому вектору. Отже, вектори a, b, c є лінійно залежними. ​​​​​​​

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Система векторів називається лінійно залежною, якщо існують такі числа , серед яких хоча б одне відмінно від нуля, що виконується рівність. >.

Якщо ж ця рівність виконується тільки в тому випадку, коли всі , то система векторів називається лінійно незалежною.

Теорема.Система векторів буде лінійно залежноютоді і лише тоді, коли хоча б один із її векторів є лінійною комбінацією інших.

приклад 1.Багаточлен є лінійною комбінацією багаточленів. Багаточлени складають лінійно незалежну систему, так як багаточлен https: //pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

приклад 2.Система матриць , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" є лінійно незалежною, так як лінійна комбінація дорівнює нульовій матриці тільки в тому випадку, коли https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21"> /images/image022_26.gif" width="40" лінійно залежною.

Рішення.

Складемо лінійну комбінацію даних векторів https://pandia.ru/text/78/624/images/image023_29.gif" 22">.

Прирівнюючи однойменні координати рівних векторів, отримуємо width="289" height="69">

Остаточно отримаємо

і

Система має єдине тривіальне рішення, тому лінійна комбінація даних векторів дорівнює нулю лише у випадку, коли всі коефіцієнти дорівнюють нулю. Тому система векторів лінійно незалежна.

приклад 4.Вектори лінійно незалежні. Якими будуть системи векторів

a).;

b).?

Рішення.

a).Складемо лінійну комбінацію та прирівняємо її до нуля

Використовуючи властивості операцій з векторами в лінійному просторі, перепишемо останню рівність у вигляді

Так як вектори лінійно незалежні, то коефіцієнти повинні бути дорівнюють нулю, тобто gif.

Отримана система рівнянь має єдине тривіальне рішення .

Оскільки рівність (*) виконується тільки при - лінійно незалежні;


b).Складемо рівність https://pandia.ru/text/78/624/images/image039_17.gif" (**)

Застосовуючи аналогічні міркування, отримаємо

Вирішуючи систему рівнянь методом Гауса, отримаємо

або

Остання система має безліч рішень https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким чином, існує, ненульовий набір коефіцієнтів, для якого виконується рівність (**) . Отже, система векторів - Лінійно залежна.

Приклад 5Система векторів лінійно незалежна, а система векторів лінійно залежна. gif. (***)

У рівності (***) . Дійсно, система була б лінійно залежною.

Зі співвідношення (***) отримуємо або Позначимо .

Отримаємо

Завдання для самостійного вирішення (в аудиторії)

1. Система, що містить нульовий вектор, є лінійно залежною.

2. Система, що складається з одного вектора а, лінійно залежна тоді і лише тоді, коли, а=0.

3. Система, що складається з двох векторів, лінійно залежна тоді і тільки тоді, коли вектори пропорційні (тобто один з них виходить з іншого множенням на число).

4. Якщо до лінійно залежної системи додати вектор, то вийде лінійно залежна система.

5. Якщо з лінійно незалежної системи видалити вектор, отримана система векторів лінійна незалежна.

6. Якщо система Sлінійно незалежна, але стає лінійно залежною при додаванні вектора b, то вектор bлінійно виражається через вектори системи S.

c).Система матриць , у просторі матриць другого порядку.

10. Нехай система векторів a,b,cвекторного простору лінійно незалежно. Доведіть лінійну незалежність наступних систем векторів:

a).a+b, b, c.

b).a+https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">–довільне число

c).a+b, a+c, b+c.

11. Нехай a,b,c– три вектори на площині, у тому числі можна скласти трикутник. Чи ці вектори будуть лінійно залежні?

12. Дано два вектори a1=(1, 2, 3, 4),a2=(0, 0, 0, 1). Підібрати ще два чотиривимірні вектори a3 таa4так, щоб система a1,a2,a3,a4була лінійно незалежною .

Вираз виду називається лінійною комбінацією векторів A 1 , A 2 ,...,A nз коефіцієнтами λ 1, λ 2 ,...,λ n.

Визначення лінійної залежності системи векторів

Система векторів A 1 , A 2 ,...,A nназивається лінійно залежною, якщо існує ненульовий набір чисел λ 1, λ 2 ,...,λ n, при якому лінійна комбінація векторів λ 1 *A 1 +λ 2 *A 2 +...+λ n *A nдорівнює нульовому вектору, Тобто система рівнянь: має ненульове рішення.
Набір чисел λ 1, λ 2 ,...,λ n є ненульовим, якщо хоча б одне з чисел λ 1, λ 2 ,...,λ n на відміну від нуля.

Визначення лінійної незалежності системи векторів

Система векторів A 1 , A 2 ,...,A nназивається лінійно незалежною, якщо лінійна комбінація цих векторів λ 1 *A 1 +λ 2 *A 2 +...+λ n *A nдорівнює нульовому вектору лише за нульового набору чисел λ 1, λ 2 ,...,λ n , Тобто система рівнянь: A 1 x 1 +A 2 x 2 +...+A n x n =Θмає єдине нульове рішення.

Приклад 29.1

Перевірити, чи є лінійно залежною система векторів

Рішення:

1. Складаємо систему рівнянь:

2. Вирішуємо її методом Гауса. Перетворення Жордано системи наведено у таблиці 29.1. При розрахунку праві частини системи не записуються оскільки вони дорівнюють нулю і за перетвореннях Жордана не змінюються.

3. З останніх трьох рядків таблиці записуємо дозволену систему, рівносильну вихіднійсистемі:

4. Отримуємо загальне рішення системи:

5. Задавши на власний розсуд значення вільної змінної x 3 =1, отримуємо приватне ненульове рішення X = (-3,2,1).

Відповідь: Таким чином, при ненульовому наборі чисел (-3,2,1) лінійна комбінація векторів дорівнює нульовому вектору -3A1+2A2+1A3=Θ. Отже, система векторів лінійно залежна.

Властивості систем векторів

Властивість (1)
Якщо система векторів лінійно залежна, то хоча б один із векторів розкладається за іншими і, навпаки, якщо хоча б один із векторів системи розкладається за іншими, система векторів лінійно залежна.

Властивість (2)
Якщо якась підсистема векторів лінійно залежна, то і вся система лінійно залежна.

Властивість (3)
Якщо система векторів лінійно незалежна, будь-яка її підсистема лінійно незалежна.

Властивість (4)
Будь-яка система векторів, що містить нульовий вектор, є лінійно залежною.

Властивість (5)
Система m-мірних векторів завжди є лінійно залежною, якщо число векторів n більше їх розмірності (n>m)

Базис системи векторів

Базисом системи векторів A 1 , A 2 ,..., A n називається така підсистема B 1 , B 2 ,...,B r(кожен із векторів B 1 ,B 2 ,...,B r є одним із векторів A 1 , A 2 ,..., A n) , яка задовольняє наступним умовам:
1. B 1 ,B 2 ,...,B rлінійно-незалежна система векторів;
2. будь-який вектор A j системи A 1 , A 2 ,..., A n лінійно виражається через вектори B 1 ,B 2 ,...,B r

r- Число векторів входять в базис.

Теорема 29.1 Про одиничний базис системи векторів.

Якщо система m-мірних векторів містить m різних одиничних векторів E 1 E 2 ,..., E m , всі вони утворюють базис системи.

Алгоритм знаходження базису системи векторів

Для того, щоб знайти базис системи векторів A 1 ,A 2 ,...,A n необхідно:

  • Скласти відповідну систему векторів однорідну систему рівнянь A 1 x 1 +A 2 x 2 +...+A n x n =Θ
  • Навести цю систему

Лінійна залежність векторів

При вирішенні різних завдань, як правило, доводиться мати справу не з одним вектором, а з деякою сукупністю векторів однієї й тієї ж розмірності. Такі сукупності називають системою векторіві позначають

Визначення.Лінійна комбінація векторівназивається вектор виду

де – будь-які дійсні числа. Також кажуть, що вектор лінійно виражається через вектори або розкладається цим векторам.

Наприклад, нехай дані три вектори: , , . Їх лінійною комбінацією з коефіцієнтами відповідно 2, 3 та 4 є вектор

Визначення.Безліч різноманітних лінійних комбінацій системи векторів називається лінійною оболонкою цієї системи.

Визначення.Система ненульових векторів називається лінійно залежною, якщо існують такі числа , що не рівні одночасно нулю, що лінійна комбінація даної системи із зазначеними числами дорівнює нульовому вектору:

Якщо ж остання рівність для даної системи векторів можлива лише за умови, то ця система векторів називається лінійно незалежною.

Наприклад, система двох векторів, лінійно незалежна; система двох векторів і лінійно залежна, оскільки .

Нехай система векторів (19) є лінійно залежною. Виберемо в сумі (20) доданок, в якому коефіцієнт , і виразимо його через інші доданки:

Як видно з цієї рівності, один із векторів лінійно залежної системи (19) виявився вираженим через інші вектори цієї системи (або розкладається за іншими її векторами).

Властивості лінійно залежної системи векторів

1. Система, що складається з одного ненульового вектора, є лінійно незалежною.

2. Система, що містить нульовий вектор, завжди лінійно залежна.

3. Система, що містить більше одного вектора, лінійно залежна тоді і тільки тоді, коли серед її векторів міститься принаймні один вектор, який лінійно виражається через інші.

Геометричний зміст лінійної залежності у разі двомірних векторів на площині: коли один вектор виражається через інший, маємо , тобто. ці вектори колінеарні, або що те саме, знаходяться на паралельних прямих.

У просторовому разі лінійної залежності трьох векторів вони паралельні до однієї площини, тобто. компланарні. Достатньо «підправити» відповідними співмножниками довжини цих векторів, щоб один із них став сумою двох інших або висловлювався через них.

Теорема.У просторі будь-яка система, що містить векторів, лінійно залежить від .

приклад.З'ясувати, чи вектори є лінійно залежними.

Рішення. Складемо векторну рівність. Записуючи у вигляді вектор-стовпців, отримуємо



Таким чином, завдання звелося до вирішення системи

Вирішимо систему методом Гауса:

В результаті отримаємо систему рівнянь:

яка має безліч рішень, серед яких обов'язково знайдеться одне ненульове, отже, вектори лінійно залежні.

Завдання 1.З'ясувати, чи система векторів лінійно незалежної. Систему векторів задаватимемо матрицею системи, стовпці якої складаються з координат векторів.

.

Рішення.Нехай лінійна комбінація дорівнює нулю. Записавши цю рівність у координатах, отримаємо таку систему рівнянь:

.

Така система рівнянь називається трикутною. Вона має єдине рішення . Отже, вектори лінійно незалежні.

Завдання 2.З'ясувати, чи є лінійно незалежною система векторів.

.

Рішення.Вектори лінійно незалежні (див. Завдання 1). Доведемо, що вектор є лінійною комбінацією векторів . Коефіцієнти розкладання за векторами визначаються із системи рівнянь

.

Ця система як трикутна має єдине рішення.

Отже, система векторів лінійно залежна.

Зауваження. Матриці, такого виду, як у задачі 1, називаються трикутними , а задачі 2 – східчасто-трикутними . Питання лінійної залежності системи векторів легко вирішується, якщо матриця, складена з координат цих векторів, є східчасто трикутною. Якщо матриця не має спеціального вигляду, то за допомогою елементарних перетворень рядків , Що зберігають лінійні співвідношення між стовпцями, її можна привести до східчасто-трикутного вигляду.

Елементарними перетвореннями рядківматриці (ЕПС) називаються наступні операції над матрицею:

1) перестановка рядків;

2) множення рядка на відмінне від нуля число;

3) додавання до рядка іншого рядка, помноженого на довільне число.

Завдання 3.Знайти максимальну лінійно незалежну підсистему та обчислити ранг системи векторів

.

Рішення.Наведемо матрицю системи за допомогою ЕПС до східчасто-трикутного вигляду. Щоб пояснити порядок дій, рядок з номером матриці, що перетворюється, позначимо символом . У стовпці після стрілки вказані дії над рядками матриці, які потрібно виконати для отримання рядків нової матриці.


.

Очевидно, що перші два стовпці отриманої матриці лінійно незалежні, третій стовпець є їхньою лінійною комбінацією, а четвертий не залежить від двох перших. Вектори називаються базисними. Вони утворюють максимальну лінійно незалежну підсистему системи , А ранг системи дорівнює трьом.



Базис, координати

Завдання 4.Знайти базис та координати векторів у цьому базисі на безлічі геометричних векторів, координати яких задовольняють умові .

Рішення. Багато є площиною, що проходить через початок координат. Довільний базис на площині складається із двох неколлінеарних векторів. Координати векторів у вибраному базисі визначаються розв'язком відповідної системи лінійних рівнянь.

Існує й інший спосіб вирішення цього завдання, коли знайти базис можна за координатами.

Координати простори є координатами на площині , оскільки пов'язані співвідношенням тобто не є незалежними. Незалежні змінні і (вони називаються вільними) однозначно визначають вектор на площині і, отже, можуть бути обрані координатами в . Тоді базис складається з векторів, що лежать у відповідних наборах вільних змінних і , тобто .

Завдання 5.Знайти базис та координати векторів у цьому базисі на безлічі всіх векторів простору, у яких непарні координати рівні між собою.

Рішення. Виберемо, як і в попередній задачі, координати у просторі .

Так як , то вільні змінні однозначно визначають вектор і, отже, є координатами. Відповідний базис складається з векторів.

Завдання 6.Знайти базис і координати векторів у цьому базисі на безлічі всіх матриць виду , де - Довільні числа.

Рішення. Кожна матриця з однозначно представлена ​​у вигляді:

Це співвідношення є розкладанням вектора з базису
з координатами .

Завдання 7.Знайти розмірність та базис лінійної оболонки системи векторів

.

Рішення.Перетворимо за допомогою ЕПС матрицю з координат векторів системи до східчасто-трикутного вигляду.




.

Стовпці останньої матриці лінійно незалежні, а стовпці лінійно виражаються крізь них. Отже, вектори утворюють базис , і .

Зауваження. Базис у вибирається неоднозначно. Наприклад, вектори також утворюють базис .

Сподобалася стаття? Поділіться їй
Вгору